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Abstract

The present work deals with the parametric instability regions of a cantilever beam with tip mass subjected to time-

varying magnetic field and axial force. The nonlinear temporal differential equation of motion having two frequency

parametric excitations is solved using second-order method of multiple scales. The closed-form expressions for the

parametric instability regions for three different resonance conditions are determined. The influence of magnetic filed, axial

load, damping constant and mass ratio on the parametric instability regions are investigated. These results obtained from

perturbation analysis are verified by solving the temporal equation of motion using fourth-order Runge–Kutta method.

The instability regions obtained using this method is found to be in good agreement with the experimental result.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

In the present work, a cantilever beam subjected to both periodic axial load and magnetic field is considered.
This study will be used in the active vibration control of many structures such as flexible manipulators,
foundations of rotating machinery, etc. These systems behave as parametrically excited systems and it is very
important to determine the instability regions to avoid excessive vibrations due to resonance.

Here a few literatures related to the dynamic analysis of beams subjected to both the magnetic field and
external forces are cited. Moon and Pao [1] investigated theoretically and experimentally the regions of
instability of cantilever beam plate in a transverse magnetic field. Kojima and Nagana [2] studied the nonlinear
vibration of a cantilever beam with tip mass subjected to alternating electromagnetic forces acting on the tip
mass. Lu et al. [3] studied the dynamic stability and bifurcation of a simply supported beam subjected to
magnetic field and alternating load by using method of multiples scales (MMS). Wu et al. [4] studied the
dynamic stability of a cantilever beam with magnetic and axial force field using IHB method. Shih et al. [5]
analyzed the transient vibrations of a simply supported beam subjected to both axial load and transverse
magnetic field. Chen and Yah [6] investigated experimentally and analytically the parametric instability of a
beam under electromagnetic excitation. Wu [7] investigated the instability regions of a simply supported beam
subjected to magnetic field and thermal loading using IHB method. Recently, free vibration analysis of a
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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simply supported (S–S) and clamped–clamped (C–C) beam under magnetic field, axial and transverse loading
is carried out by Liu and Chang [8].

Many researchers investigated the parametric instability regions of the cantilever beam subjected to time-
varying axial load without considering the magnetic field. Burney and Jaeger [9] investigated the region of
instability of a column hinged at both ends and subjected to periodic axial compressive load. Kar and Sujata
[10] studied the parametric instability region of a cantilever beam subjected to a time-dependent axial force.
Chen and Yah [11] studied the dynamic instability of a column carrying a concentrated mass with oscillating
motion along the column axis. Hyun and Yoo [12] investigated the instability regions of a cantilever beam
subjected to axial excitation using MMS. Chung et al. [13] investigated the instability regions of cantilever
beam with rotary oscillation. In most of the cases, the system is reduced to that of a parametrically excited
system with single frequency excitation. One may find different methods to determine the parametric
instability regions in the books by Nayfeh and Mook [14], and Nayfeh and Balachandran [15].

It is observed that no studies have been carried out to find the instability regions of a cantilever beam with
tip mass subjected to time-varying axial loading and magnetic field. Therefore, in the present work, an attempt
has been made to study the dynamic instability of a cantilever beam with and without tip mass subjected to
these loadings. In this work, the equation of motion is obtained by using extended Hamilton’s principle, which
is reduced to a damped Hill equation, by using generalized Galerkin’s Method. This equation is similar to that
of Wu et al. [4] where the system is considered to be a cantilever beam without any tip mass. They have used
IHB method, which does not yield any closed-form solution. But in the present work second-order method of
multiple scales is used to derive the analytical expressions for the regions of instability for three different
resonance conditions. Effect of the magnetic filed, damping factor, axial force and mass ratio on instability
regions are determined. The instability regions are verified by solving the temporal equation of motion. The
instability region for a cantilever beam subjected to magnetic field is compared with the experimental result of
Moon and Pao [1] and the numerical result of Wu et al. [4] and is found to be in good agreement.
2. The governing equation of motion of the systems

Figs. 1(a) and (b) show cantilever beams with and without tip mass subjected to time-dependent axial load
P ¼ P0 þ P1 cos O1t and transverse magnetic field B0 ¼ Bm cos O2t where P0, P1, Bm, O1 and O2 are static
axial force, amplitude of periodic axial force, strength of induced magnetic field, frequency of the periodic
axial force and frequency of the magnetic field, respectively. Here L, d and h are the length, width and depth of
the cantilever beam, respectively. The governing equation of motion of the cantilever beam is derived by using
extended Hamilton’s principle, which can be given by

m €Y þ Cd
_Y þ EIY 0000 þ ðP0 þ P1 cos O1tÞY

00

� B2
0hd

wm

m0mr

Y 00 þ s Y 00
Z x

0

Z x
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Y 0ðZÞ _Y
0
ðZÞdZdxþ Y 0

Z x

0

Y 0ðxÞ _Y
0
ðxÞdx

� �� �
¼ 0. ð1Þ

This equation is similar to that obtained by Wu et al. [4] and Liu and Chang [8] but the boundary conditions
are different. It may be noted that Liu and Chang [8] considered simply supported and clamped–clamped
beam in their analysis.

Here, E and I are the Young modulus, moment of inertia of the cantilever beam and Cd is damping
constant, m is the mass of the beam per unit length, mb is the mass of the beam, mt is the attached mass at the
B0 B0

PP

Fig. 1. Schematic diagram of the system (a) cantilever beam and (b) cantilever beam with tip mass subjected to both periodic axial load

and magnetic field.
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tip, m0 is the permeability of the vacuum, mr is the relative permeability, s is the conductivity of the material
and wm is the magnetic susceptibility. x, Z are used as integration variables.

Now, the generalized Galerkin’s Method is used to discretize the equation of motion (1) by using the
following assumed mode shape:

Y ðx; tÞ ¼ rcðxÞuðtÞ, (2)

where r is the scaling factor, u(t) is the time modulation and c(x) is the eigenfunction of the following system.
For system 1(a), c(x) is the eigenfunction obtained from the free vibration of a cantilever beam which can

be given by

cðxÞ ¼ ðsin bLþ sinh bLÞðcos bx� cosh bxÞ � ðcos bLþ cosh bLÞðsin bx� sinh bxÞ. (3)

One may determine bL from the following equation:

1þ cos bL cosh bL ¼ 0. (4)

For system 1(b) c(x) is the eigenfunction of a cantilever beam with tip mass, which can be given by

cðxÞ ¼ �
sin bLþ sinh bL

cos bLþ cosh bL

� �
ðcos bx� cosh bxÞ þ ðsin bx� sinh bxÞ. (5)

In this case one may determine bL from the following equation:

cos bLþ cosh bLþ
mt

mb

bLðsin bL� sinh bLÞ

� �
ðcos bLþ cosh bLÞ

þ sin bL� sinh bL�
mt

mb

bLðcos bL� cosh bLÞ

� �
ðsin bLþ sinh bLÞ ¼ 0. ð6Þ

The following nondimensional parameters are used in this analysis:

x̄ ¼
x

L
; t ¼ ost; m̄ ¼

mt

mb

; r̄ ¼
r

L
; Ō1 ¼

O1

os

and Ō2 ¼
O2

os

.

By substituting Eq. (2) into Eq. (1) and using the above nondimensional terms, the resulting temporal
differential equation of motion can be expressed as

€uþ 2�z _uþ uþ �ða1 cos Ō1t� a2 cos 2Ō2tÞu� �ða3 þ a4Þð1þ cos 2Ō2tÞu2 _u ¼ 0. (7)

Here e is the book-keeping parameter. The expressions for the terms of linear frequency of the beam oL,
system fundamental frequency os, nondimensional amplitude of external axial force a1, amplitude of magnetic
force a2 and amplitude of nonlinear inertia terms a3, a4 are given below:
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. ð8Þ

Eq. (7) is similar to that of temporal Eq. (18) of Liu and Chang [8] neglecting the external force (f) and stiffness
term (k) and [4]. But, it may be noted that Liu and Chang [8] studied only the free vibration by solving the
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temporal equation numerically using fourth-order Runge–Kutta method for S–S and C–C beams. Wu et al. [4]
studied instability regions and vibration motion of cantilever beam without considering the tip mass and they
used IHB method for finding the instability regions which does not yield any closed-form solution. To study
the parametric instability regions of the trivial state, one may reduce the temporal equation of motion (7) to
the following linear damped Hill’s equation:

€uþ 2�m _uþ uþ �ða1 cos Ō1t� a2 cos 2Ō2tÞu ¼ 0. (9)

The analytical expressions for the parametric instability regions are determined by using the second-order
method of multiple scales as described in the following section.

3. The perturbation analysis

Here, the method of multiple scales is used to find the analytical expressions for the instability regions. In
this method, displacement u can be represented in terms of different times scale (T0, T1, T2) and a book-
keeping parameter e as follows:

uðt; �Þ ¼ u0ðT0;T1;T2Þ þ �u1ðT0;T1;T2Þ þ �
2u2ðT0;T1;T2Þ þOð�3Þ, (10)

here T0 ¼ t, T1 ¼ �t and T2 ¼ �2t. The transformations of first and second time derivatives are given by

d

dt
¼ D0 þ �D1 þ �

2D2 þOð�2Þ, (11)

d2

dt2
¼ D2

0 þ 2�D0D1 þ �
2ðD2

1 þ 2D0D2Þ þOð�3Þ, (12)

where D0 ¼ q=qT0, D1 ¼ q=qT1 and D2 ¼ q=qT2. Substituting Eqs. (10), (11) and (12) into Eq. (9) and
equating the coefficient of like powers of e, yields the following equations:

Order �0 : D2
0u0 þ u0 ¼ 0, (13)

Order �1 : D2
0u1 þ u1 ¼ �2D0D1u0 � 2mD0u0 � a1 cosðŌ1tÞu0 þ a2 cosð2Ō2tÞu0, (14)

Order �2 : D2
0u2 þ u2 ¼ � 2D0D1u1 � 2mD1u0 � 2mD0u1 � ðD

2
1 þ 2D0D2Þu0

� a1 cosðŌ1tÞu1 þ a2 cosð2Ō2tÞu1. ð15Þ

General solutions of Eq. (13) can be written as

u0 ¼ AðT1;T2Þ expðiT0Þ þ ĀðT ;T2Þ expð�iT0Þ. (16)

Substituting Eq. (16) into Eq. (14) leads to

D2
0u1 þ u1 ¼ � 2iA0 expðiT0Þ � 2imA expðiT0Þ �

a1
2
½A exp ið1þ Ō1ÞT0 þ Ā exp iðŌ1 � 1ÞT0�

þ
a2
2
½A exp ið1þ 2Ō2ÞT0 þ Ā exp ið2Ō2 � 1ÞT0� þ cc: ð17Þ

One may observe that any solution of Eq. (17) will contain secular or small divisor terms when
nondimensional frequency of external axial loading ðŌ2Þ is nearly equal to 2 and/or nondimensional
frequency of magnetic field ðŌ2Þ is nearly equal to 1. Hence, one may have three different resonance conditions
viz. (i) ðŌ1Þ � 2 and Ō2 is away from 1, (ii) Ō2 � 1 and Ō1 is away from 2 and (iii) Ō2 � 2 and Ō1 � 1
simultaneously. These three conditions are discussed in the following sections.

3.1. Case 1: Ō1 � 2 and Ō2 is away from 1

For this case, to express the nearness of Ō1 to 2, one may use the detuning parameter s as

Ō1 ¼ 2þ 2�s; s ¼ Oð1Þ. (18)
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Substituting Eq. (18) into Eq. (17) and eliminating the secular or small divisor terms yields

2iA0 þ 2imAþ
a1
2

Ā exp ið2sT1Þ ¼ 0. (19)

One may write the particular solution of Eq. (17) as

u1 ¼
a1

2½ð1þ Ō1Þ
2
� 1�
ðAðT1Þ exp ið1þ Ō1ÞtÞ �

a2
2½ð1þ 2Ō2Þ

2
� 1�
ðAðT1Þ exp ið1þ 2Ō2ÞtÞ

�
a2

2½ð1� 2Ō2Þ
2
� 1�
ðAðT1Þ exp ið2Ō2 � 1ÞtÞ þ cc. ð20Þ

Substituting Eqs. (16) and (20) into Eq. (15) and eliminating the secular or small divisor terms yields

2iD2Aþ 2mD1AþD2
1Aþ GA ¼ 0, (21)

where

G ¼
1

2

a21
4Ō1 þ 2Ō2

1

 !
þ

1

2

a22
8Ō2 þ 8Ō2

2

 !
þ

1

2

a22
�8Ō2 þ 8Ō2

2

 !
.

From Eq. (19), one may obtain

D2
1A ¼ m2Aþ

a1
4

� �2
A�

a1
4
ð2miþ 2sÞĀ expð2isT1Þ. (22)

Substituting Eqs. (19) and (22) into Eq. (21) gives

2iD2Aþ �m2 þ
a1
4

� �2
þ G

� �
A�

a1
2
sĀ expð2isT1Þ ¼ 0. (23)

Substituting Eqs. (19) and (23) to Eq. (11), one may obtain the following equation:

2i
dA

dt
þ 2i�mþ �2 �m2 þ

a1
4

� �2
þ G

� �� �
Aþ

a1
4
ð�� 2�2sÞĀ expð2isT1Þ ¼ 0. (24)

Putting A ¼ ðBr þ iBiÞ expði�stÞ, where Br and Bi are real and imaginary parts in Eq. (24) and separating the
real and imaginary parts yield the following equations:

2
dBr

dt
þ 2�mBr þ 2�sþ �

a1
2
� �2

a1
2
s

� �
� �m2 þ

a1
4

� �2
þ G

� �� �
Bi ¼ 0, (25)

2
dBi

dt
þ 2�mBi þ �2�sþ �

a1
2
� �2 �

a1
2
s

� �
þ �m2 þ

a1
4

� �2
þ G

� �� �
Br ¼ 0. (26)

Substituting ðBr; BiÞ ¼ ðbr; biÞ expðgtÞ into Eqs. (25) and (26) yields the following equations:

2gbr þ 2�mbr þ 2�sþ �
a1
2
� �2

a1
2
s

� �
� �m2 þ

a1
4

� �2
þ G

� �� �
bi ¼ 0, (27)

2gbi þ 2�mbi þ �2�sþ �
a1
2
� �2 �

a1
2
s

� �
þ �m2 þ

a1
4

� �2
þ G

� �� �
br ¼ 0. (28)

For steady-state trivial response, g is equal to zero. One may obtain the expression for the transition curves by
finding the value of s from the above two equations. Neglecting the terms Oð�3Þ, one may write the expression
for transition curves of the second-order expansion when Ō1 � 2 as

Ō1 ¼ 2� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 m2 þ 3

a1
4

� �2
� G

� �2

þ 4
a21
16
� m2

� � !vuut � �2 m2 þ 3
a1
4

� �2
� G

� �
. (29)
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3.2. Case 2: Ō2 � 1 and Ō1 is away from 2

Following the method similar to that described in Section 3.1, for this simple resonance case Ō2 � 1 ðŌ2 ¼

1þ �sÞ and Ō1 is away from 2, the transition curves emanating from Ō2 � 1 may be written as

Ō2 ¼ 1�
�

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 m2 þ 3

a1
4

� �2
� G

� �2

þ 4
a21
16
� m2

� � !vuut �
�2

2
m2 þ 3

a1
4

� �2
� G

� �
. (30)

Here,

G ¼
1

2

a21
4Ō1 þ 2Ō2

2

 !
þ

1

2

a21
�4Ō1 þ 2Ō2

1

 !
þ

1

2

a22
8Ō2 þ 8Ō2

2

 !
.

3.3. Case 3: Ō1 � 2 and Ō2 � 1

In this resonance condition when the system is excited simultaneously by the external force and the magnetic
field, the frequency of excitation can be given by O ¼ Ō1 ¼ 2Ō2 ¼ 2þ 2�s. Following the method similar to
that described in Sections 3.1 and 3.2, the expression for the transition curves can be given by

O ¼ 2� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 m2 þ 3

a1 � a2
4

� �2
� G

� �2

þ 4
ða1 � a2Þ

2

16
� m2

� � !vuut � �2 m2 þ 3
a1 � a2

4

� �2
� G

� �
. (31)

Here,

G ¼ �
1

2

a21
4Ō1 þ 2Ō2

1

 !
þ

1

2

a1a2

4Ō1 þ 2Ō2

1

 !
�

1

2

a22
8Ō2 þ 8Ō2

2

 !
þ

1

2

a1a2

8Ō1 þ 8Ō2

1

 !
.

4. Numerical results and discussions

In all simulations, a steel beam with length L ¼ 0.5m, width d ¼ 0.001m, depth h ¼ 0.005m, Young’s
Modulus E ¼ 1.94� 1011N/m2, mass of the beam m ¼ 0.04 kg, the permeability of the vacuum, m0 ¼ 1.26�
10�06Hm�1 and relative permeability mr ¼ 3000 are considered. In Section 4.1, the results for the case with
nondimensional frequency of magnetic field Ō2 � 1 and nondimensional frequency of external axial loading
Ō1 away from 2, in Section 4.2 the results for the case with Ō1 � 2 and Ō2 away from 1 and in Section 4.3 the
results for the case with Ō1 � 2 and Ō2 � 1 are presented. The instability regions are plotted and the effect of
the key parameters like magnetic field B0, damping constant Cd, static axial force P0, amplitude of axial
periodic load P1 and mass ratio m̄ on the region of instability are investigated. In these plots, the regions
bounded by the curves are unstable and regions outside the curves are stable.

4.1. Simple resonance due to magnetic field (Ō2 � 1 and Ō1 is away from 2)

In this case, the system is subjected to magnetic field with a frequency nearly equal to the natural frequency
of the system and the frequency of external axial loading is away from the principal parametric instability
zone. Fig. 2 shows the parametric instability region in ðO2=oLÞ

2
�ðBr=BcÞ

2 plane for a cantilever beam
subjected to only the transverse magnetic field. For comparison purpose, the instability region obtained
experimentally and numerically by Moon and Pao (Wu et al. [4]) is also being plotted. It is observed that the
present result and the experimental result of Moon and Pao [1] are in very good agreement. It may be noted
that Wu et al. [4] also obtained similar result by a different method (i.e., IHB method). But they have not
studied the case of cantilever beam with tip mass. Also, the IHB method does not yield any close-form
expression as obtained in the present work.
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Fig. 2. Region of instability in magnetic field, - � - � - � -, Pao’s theoretical result; - - - -, Pao’s experimental result; and ——, present result.

Fig. 3. Influence of the static axial force on the transition curves in magnetic field for cantilever beam without tip mass (I) Cd ¼ 0.0, (II)

Cd ¼ 0.2 and (III) Cd ¼ 0.4; (a) P0 ¼ 5 and (b) P0 ¼ 10.

Fig. 4. Influence of the mass ratio on the transition curves in magnetic field for cantilever beam with tip mass for P0 ¼ 1:0; (I) Cd ¼ 0.0,

(II) Cd ¼ 0.2 and (III) Cd ¼ 0.4; (a) m̄ ¼ 0:1 and (b) m̄ ¼ 0:2.

B. Pratiher, S.K. Dwivedy / Journal of Sound and Vibration 305 (2007) 904–917910
To thoroughly study the instability region for different system parameters, in the following figures, they are
plotted either in P1�Ō1 or in B2

m�Ō2 plane. Figs. 3 and 4 respectively show the influence of static load
parameter P0 and mass ratio m̄ on the instability regions.
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From Fig. 3, one may observe that with increase in static force the parametric instability region is
decreased. One may note from Figs. 3 and 4 that with decrease in mass ratio m̄ and with increase in
damping Cd the region of instability get decreased. It may be observed that these instability regions
are independent of P1 as the frequency of axial loading is away from the principal parametric
zone.

The instability regions obtained in this resonance case are verified by solving the temporal differential
equation (7). The time responses for three points in the instability regions are determined (points of A, B and
C of Figs. 3(b and I)) with damping Cd ¼ 0.0 as shown in Figs. 5(a–c). It may clearly be observed from the
time responses that while points B and C are stable trivial-state response, point A is unstable, which is in good
agreement with the perturbation analysis.
Fig. 5. Time response for (a) point C; (b) point B and (c) point A; key as in Fig. 3(b, I).
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4.2. Principal parametric resonance due to external loading (Ō1 � 2, Ō2 away from 1)

In this section, effects of damping constant, magnetic field, static axial force and mass ratio on the
parametric instability regions in periodic axial force field are investigated. Figs. 6–8 show the instability
Fig. 6. Influence of the magnetic filed on the transition curves in periodic axial force field for cantilever beam without tip mass for

P0 ¼ 1:0; (I) Cd ¼ 0.0, (II) Cd ¼ 0.2 and (III) Cd ¼ 0.4; (a) Bm ¼ 0.3 and (b) Bm ¼ 1.3.

Fig. 7. Influence of the static axial force on the transition curves in periodic axial force field for cantilever beam without tip mass for

Bm ¼ 0.3; (I) Cd ¼ 0.0, (II) Cd ¼ 0.2 and (III) Cd ¼ 0.4; (a) P0 ¼ 5 and (b) P0 ¼ 10.

Fig. 8. Influence of the mass ratio on the transition curves in periodic axial force field for cantilever beam with tip mass for Bm ¼ 0.3 and

P0 ¼ 1:0, (I) Cd ¼ 0.0, (II) Cd ¼ 0.2 and (III) Cd ¼ 0.4; (a) m̄ ¼ 0:1 and (b) m̄ ¼ 0:2.
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Fig. 9. Time response for (a) point C; (b) point B and (c) point A; key as in Fig. 6(a, II).
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regions when the system is excited at a frequency Ō1 ’ 2 (i.e., nearly equal to twice the fundamental
frequency) and Ō2 is away from 1.

In Fig. 6, the influence of magnetic field and damping on the instability regions for the system shown in
Fig. 1(a) are investigated. It is observed that with increase in magnetic field strength Bm, the instability region
increases and with increase in damping the system becomes more stable. Fig. 7 shows the influence of static
load parameter P0 and damping on the parametric instability regions for the same system. From Figs. 6(a) and
7(a, b), it is apparent that with increase in P0 the instability regions decrease. This is due to the fact that with
increases in P0 the natural frequency of the system increases, which reduces the range of instability regions.
Fig. 8 shows the influence of mass ratio m̄ (ratio of the tip mass to the mass of the beam) on the instability
regions for the system shown in Fig. 1(b). As with increase in mass ratio, the natural frequency oL decreases,
Ō1 increases. This causes the increase in the instability region, which may be noted from Figs. 6–8. From all
these figures, it is observed that damping improves the stability of the system.

Similar to the previous case, here also for the principal parametric resonance case, i.e., Ō1 � 2, one may
verify the instability regions obtained using the perturbation analysis by plotting the time response which are
determined numerically by solving the temporal Eq. (7). Figs. 9(a–c) show the time responses for three points
A, B and C which are marked in Fig. 6(a, II) with Cd ¼ 0.2. In Fig. 6, it is shown that while points B and C are
in stable region point A is in the unstable regions, which are in good agreement with the time response
obtained from the temporal equation.

4.3. Simultaneous principal parametric and simple resonance (Ō1 � 2 and Ō2 � 1)

In this case, the system is subjected to magnetic field with a frequency nearly equal to the natural frequency
of the system and an external axial loading with a frequency nearly equal to twice the fundamental frequency.
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Hence the system is subjected to simultaneous principal parametric resonance due to external axial loading
and simple resonance due to magnetic field.

In this case, Fig. 10 shows the influence of magnetic field and damping on the transition curves for the
system shown in Fig. 1(a). It is observed that with increase in magnetic field and damping the stability of the
Fig. 10. Influence of the magnetic filed on the transition curves cantilever beam without tip mass for P0 ¼ 1:0, (I) Cd ¼ 0.0, (II) Cd ¼ 0.2

and (III) Cd ¼ 0.4; (a) Bm ¼ 0.3 and (b) Bm ¼ 1.3.

Fig. 11. Influence of the periodic axial force on the transition curves cantilever beam without tip mass for P1 ¼ 1:0, (I) Cd ¼ 0.0, (II)

Cd ¼ 0.2 and (III) Cd ¼ 0.4; (a) P0 ¼ 3 and (b) P0 ¼ 5.

Fig. 12. Influence of the mass ratio in periodic axial force on the transition curves for P0 ¼ 1:0 and Bm ¼ 0.3, (I) Cd ¼ 0.0, (II) Cd ¼ 0.2

and (III) Cd ¼ 0.4; (a) m̄ ¼ 0:1 and (b) m̄ ¼ 0:2.
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Fig. 13. Influence of the mass ratio in magnetic field on the transition curves for P1 ¼ 1:0 and P0 ¼ 1:0, (I) Cd ¼ 0.0, (II) Cd ¼ 0.2 and

(III) Cd ¼ 0.4; (a) m̄ ¼ 0:1 and (b) m̄ ¼ 0:2.

Fig. 14. Time response for (a) point C; (b) point B and (c) point A; key as in Fig. 10(a, II).
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system improves. One may find a critical value P1 below which the system is always stable. For example, from
Fig. 10(b) for the system with Cd ¼ 0.2 the critical value P1 is 5.05. These values will be very much useful for
designing the flexible manipulators.

The influence of static load P0 on the instability regions B2
m�O is shown in Figs. 11(a and b) and it is

observed that with increase in P0, the instability region decreases. For example, from Fig. 11(a, III) the system
is always stable for a magnetic field of B2

m less than 3.1 and with increase of P0 to 5 this critical value of B2
m

increases to 3.95.
Figs. 12 and 13 show the influence of mass ratio m̄ on the parametric instability regions in P1�O and B2

m�O
plane, respectively. One may observe that similar to the previous cases, here also with increase in m̄ the region
of instability increases.

Similar to previous cases, here the results from the perturbation analysis are compared by plotting the time
response, which are obtained by numerically solving the temporal equation of motion (Eq. (7)). Figs. 14(a–c)
correspond respectively to the points A, B and C of Fig. 10(a, II). They are found to be in good agreement.

5. Conclusions

In this work, the stability boundaries of a cantilever beam with and without tip mass subjected to time-
varying transverse magnetic field and axial periodic load are studied. The nonlinear temporal equation of
motion, which contains two frequency parametric excitation terms, is solved using second-order method of
multiple scales. Instability regions are found for three different resonance conditions viz., simple resonance,
principal parametric resonance and simultaneous principal parametric and simple resonance. In case of simple
resonance, the instability region is compared with the experimental work and is found to be in good
agreement.

One may use Eqs. (29)–(31) to determine the parametric instability regions for different resonance
conditions for any similar physical system. In all the cases, it is observed that with increase in damping and
static axial load or decrease in mass ratio the instability region decreases and one may control the vibration of
a system using required magnetic field as shown in the figures with parametric instability regions.
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